domingo, 15 de febrero de 2009

LA CIENCIA EN LA PRENSA (5).jlpm

REPORTAJE
La chispa de Dios ¿Qué pasó al principio de todo?
LUIS MIGUEL ARIZA 15/02/2009

Viajemos al primer 0,000.000.000.000.000.000.000.000.000.000.000. 000.000.001 segundo del universo. A ese último resquicio donde algunos ven a Dios, y otros, como el acelerador de partículas del CERN, que se pondrá en marcha este año, persiguen leyes físicas.

La partícula de Dios es el título de un libro sobre cosmología que publicó el premio Nobel Leon Lederman en 1994. Se refiere al bosón de Higgs, en honor del físico escocés Peter Higgs, quien lo dedujo teóricamente en los años sesenta como el responsable de proporcionar la masa al resto de partículas. Surgió casi simultáneamente con el Big Bang, y es la partícula más pesada de todas las conocidas. Para los físicos, demostrar su existencia sería casi como encontrar el Santo Grial: sin ella, todo carecería de masa; no existiría la gravedad, galaxias, estrellas o planetas, ni la vida.

Usted no podría estar leyendo este artículo. Claro que Higgs podría haberse equivocado. Su bosón ha demostrado ser la bestia más escurridiza de la física. Durante décadas, los físicos han buscado su rastro en las colisiones que se producen en las tripas de los aceleradores de partículas. Ahora, con la puesta en marcha del Gran Colisionador de Hadrones del Laboratorio Europeo de Partículas (CERN), el más poderoso del mundo, contienen la respiración. Si el bosón aparece, el paso dado por la física sería casi tan trascendental como el calificativo de "divino".

"Espero que al final lo encuentren, ya que Peter tuvo esta idea maravillosa hace cuarenta años, y si sucede mientras vive, estoy seguro de que compartirá el Premio Nobel", explica el reverendo sir John Polkinghorne a El País Semanal desde su casa en Cambridge, al otro lado del teléfono.

¿Reverendo? Sí, y también caballero por la reina de Inglaterra. Es autor de más de 35 obras -la última es Questions of truth- que abordan la relación entre ciencia y religión, dos invenciones humanas tan irreconciliables como el agua y el aceite. De esa pasta está hecho Polkinghorne, que también es un físico de primera. Como profesor de física matemática de la Universidad de Cambridge, este afable británico de 78 años ha enseñado a premios Nobel como Brian Josephson o astrofísicos como Martin Rees, y ha trabajado con el Nobel Murray Gellman, aportando sus investigaciones fundamentales para descubrir el quark, el componente básico de la materia. Y, por supuesto, ha trabajado con Peter Higgs, un ateo convencido.

Cuando Lederman sacó su libro con este título, La partícula de Dios, al escocés no debió de sentarle muy bien. Por usar un término educado. "Creo que fue una tontería, aunque suele ocurrir que cuando los científicos escriben para el gran público y extraen la palabra Dios fuera del texto para colocarla en el título, eso les ayuda a vender más ejemplares", reconoce este reverendo anglicano.

Lederman quería titular su libro Aquella maldita partícula de Dios. "La llamó de esa manera porque nadie podía encontrar la maldita cosa", dice el físico británico Paul Davies, haciéndose eco de un rumor que corre entre sus colegas. En inglés, la palabra "maldita de Dios" (goddammed) tiene connotaciones religiosas. "El editor no estaba de acuerdo con un título blasfemo porque podía ofender la sensibilidad religiosa americana. Así que la cambió por Partícula de Dios (God particle)". Se cumplió además una regla no escrita, formulada por el astrónomo ya fallecido Fred Hoyle, por la que las palabras ingeniosas en cosmología se anclan en el imaginario colectivo como ganchos (a Hoyle se le recuerda por haber acuñado el término Big Bang en un comentario casi despectivo durante un programa de radio de la BBC en 1949, al tratar de explicar al público la teoría de la creación súbita del universo, en la que jamás creyó).

¿Es una cuestión meramente semántica, o esta "partícula de Dios" refleja algo más que un truco comercial? Los críticos aducen que se usa la ciencia para vender religión. Otros no han dudado en aprovecharse de la religión para vender ciencia. Cuando, en 1992, el físico George Smoot presentó al mundo el mapa de la radiación de microondas del universo cuando tenía 300.000 años de edad -el equivalente a presentar una fotografía de un embrión humano de diez horas-, sus palabras, recogidas en una conferencia de prensa, fueron: "Si eres religioso, es como si estuvieras viendo a Dios". El mapa de COBE (explorador de fondo cósmico) estaba construido como un conjunto de gránulos coloreados de materia, y surgieron en la prensa títulos como La huella dactilar de Dios. El propio Smoot, que compartió por ello el Nobel de Física en 2006, destaca en su biografía las reacciones de sus colegas al hallazgo. "Han encontrado el Santo Grial de la física", dijo Michael Turner, astrofísico de la Universidad de Chicago. "Es como el génesis", exclamó por su parte Stephen Maran, el editor de la prestigiosa enciclopedia Astronomy and Astrophysics.

Timothy Ferris, profesor emérito de periodismo científico de la Universidad de Berkeley y uno de los más reputados escritores científicos estadounidenses, se muestra reacio al debate: "No paso por discutir sobre estos temas en términos religiosos", responde por correo electrónico. "Estas discusiones sólo alimentan la ilusión generalizada de que las creencias religiosas te permiten entender mejor asuntos científicos, cuando no es el caso. También sugieren que la religión actúa como guía para la investigación que llevan los científicos, lo que depende de cada cual". Ferris cree que esta interferencia refuerza la idea de que "el origen del universo o de las leyes naturales no puede ser entendido sin el recurso de recurrir a un Dios. Y no es el caso. Todo lo contrario, si se invoca a Dios se están violando los principios científicos". Y concluye: "Si la religión tiene algo útil que ofrecer a la ciencia, desconozco lo que es".

Howard Haber, profesor del Instituto de Física de Partículas de la Universidad de California en Santa Cruz, lleva treinta años investigando la física del bosón de Higgs. "Creo que Leon Lederman, un físico muy reputado, introdujo el término 'partícula de Dios' presumiblemente para atraer la atención del público, pero nos hizo claramente un flaco favor", asegura. "Ningún científico serio usaría ese nombre en un artículo científico o en una conferencia. La ciencia y la religión son dos empresas humanas que están en esferas diferentes, y están fundadas bajo principios claramente distintos. Otros pueden no estar de acuerdo, pero yo creo que cualquier intento para mezclarlas termina en algo que no tiene sentido o que produce confusión".

A pesar de las críticas, la palabra Dios no es tabú: los más grandes la han usado abiertamente. Stephen Hawking, que ocupa la Silla Lucasiana como profesor de Matemáticas de la Universidad de Cambridge, manifestó en una visita reciente a España: "La ciencia no deja mucho espacio para los milagros o para Dios". En el pasado, cuando escribió su famosa obra Breve historia del tiempo, admitió que tenía el convencimiento de que "algún día conocería el rostro de Dios", y que estaba convencido de que la teoría de la totalidad (capaz de aunar todas las fuerzas conocidas que operan en el universo en una sola) se encontraría al finalizar el milenio. Ahora, Hawking es un poco más pesimista. Con bastante ironía, ha apostado poco más de cincuenta euros a que el LHC fracasará a la hora de encontrar el bosón de Higgs, dejando además un comentario no menos suculento. "Creo que será mucho más excitante si no lo encontramos. Significará que nos hemos equivocado en algo, y que tendremos que empezar de nuevo", indicó a la BBC.

Los científicos construyen los aceleradores como el LHC para estrellar partículas entre sí (en este caso, protones contra protones). La búsqueda del bosón de Higgs consistirá en examinar millones de datos y detectar si hay una fluctuación estadística que se salga de la media. Los físicos llorarán de alegría. "Yo creo que van a tener éxito, pero probablemente les va a llevar unos tres años para estar seguros", nos dice Paul Davies. La tarea es monstruosa: encontrarlo será como dar con un alfiler de un gramo en un pajar de 100 millones de toneladas métricas.

Davies dirige el centro Beyond de la Universidad Estatal de Arizona y también es un conocido divulgador de la ciencia. No ha dudado en abordar con valentía el término Dios en sus libros (su último título es The Goldilocks enigma, no publicado aún en español), mezclando física, teología y filosofía. Todo lo contrario que Steven Weinberg. El Nobel comentó recientemente a la revista Newsweek que la ciencia está arrinconando cada vez más a la religión y que por ello la necesidad de una explicación religiosa a la creación del universo se hace cada vez menos necesaria. Weinberg es un declarado ateo. Admite que tanto la ciencia como la religión son inventos humanos, pero que las sectas religiosas en Occidente están aprendiendo a dejar de explicar la naturaleza en términos religiosos, dejando la tarea a la ciencia. "Cuanto más sabemos del universo, menos signos vemos de un diseñador inteligente. Isaac Newton pensó que una explicación de cómo brillaba el Sol podría hacerse en términos de la acción de Dios. Pero ahora sabemos que el Sol brilla gracias al calor producido por la conversión de hidrógeno en helio. La gente que espera encontrar evidencias de la acción divina en la naturaleza, en el origen o en las leyes que gobiernan la materia se va a llevar una decepción".

Si el bosón de Higgs existe, nos dice Polkinghorne, podría haber surgido en una época tempranísima del universo, en un lapso tan corto que resulta inconcebible para la mente humana. "Probablemente hablamos de 10 elevado a menos 43 segundos después del Big Bang, de una manera tan increíblemente rápida que no se puede comprender". La cifra hay que escribirla entera en una línea entera, y el universo tendría por entonces 0,000.000.000.000.000. 000.000.000.000.000.000.000.000.001 segundos de edad.

Es la llamada era de Planck, el tiempo más breve concebible por la ciencia. "Y ya tienes que tener toda una clase de leyes de la naturaleza por debajo, para que exista la posibilidad de que la partícula aparezca en ese tiempo", recalca Polkinghorne.

Lawrence Krauss, físico y cosmólogo de la Universidad Estatal de Arizona, discrepa sobre la cronología. El bosón de Higgs lleva un "campo asociado", que pudo surgir más tarde. Las distintas partículas, de acuerdo con la teoría, nacieron sin masa, y la adquirieron al pasar a través de este "campo de Higgs". "Es como si tratases de empujar un coche por una carretera y de repente topas con el fango; se hace más difícil empujarlo. El campo de Higgs es como una especie de campo cósmico de barro. Creemos que este campo surgió por accidente cuando el universo tenía una millonésima de millonésima de segundo". En números, 10 elevado a menos doce segundos. El campo de Higgs aparece un poco más tarde, pero aun así extraordinariamente pronto. "No podemos recrear el universo cuando tenía 10 elevado a menos 43 segundos, pero sí cuando tenía una millonésima de millonésima de segundo". Es comprensible la excitación que rodea al LHC, que presumiblemente entrará en funcionamiento este verano.

Esas leyes naturales definen un universo que exhibe una sintonía extraordinaria. Las constantes de la naturaleza son muy precisas y exactas. La luz tiene una velocidad má­xima (300.000 kilómetros por segundo). El electrón, una masa y una carga establecida. Las leyes operan bajo esas constantes, y lo hacen por igual en el comedor o en su cocina que en la región más ecuatorial de la galaxia de Andrómeda. La gravedad es una atracción entre los cuerpos inversamente proporcional al cuadrado de la distancia que los separa, y no al cubo de la distancia, por ejemplo. ¿Es el universo en que vivimos producto del mero accidente?

Esta cuestión torturó al físico más grande de la historia, Albert Einstein, que llegó a afirmar que Dios "no juega a los dados con el universo". Einstein no creía en un Dios cristiano tradicional, ni tampoco aceptó que nuestro universo era el simple resultado de un accidente. Sin embargo, comentó que el aspecto "más incomprensible del universo es que es comprensible". Para Lawrence Krauss fue casi una declaración de fervor religioso. Lo cierto es que aquellos que le presentaron como un ateo convencido se equivocaron. "Lo que me diferencia de los llamados ateos es un sentimiento de absoluta humildad ante los inalcanzables secretos de la armonía del cosmos", dijo el gran sabio, según recoge la última biografía del escritor norteamericano Walter Isaacson. Los ateos fanáticos, explicó Einstein en una de sus cartas, "son como esclavos que todavía sienten el peso de sus cadenas cuando se han despojado de ellas tras una dura lucha. Son criaturas que, en su resentimiento contra la religión tradicional como opio de las masas, son incapaces de oír la música de las esferas".

Además de un prestigioso cosmólogo, Krauss es uno de los mejores escritores de best-seller sobre el universo (su último libro es Quintaessence, the mistery of the missing mass), y deplora usar el término Dios en sus obras. "Todo lo que sabemos del universo está constreñido en una región que ocupa el espacio de un solo átomo. ¡Es increíble!". El hecho de que las matemáticas sean el lenguaje de la naturaleza es uno de los hechos más sobresalientes e inexplicables". Y Krauss se hace la siguiente pregunta: ¿por qué somos capaces de describir el universo desde que tenía billonésimas de segundo y predecir su futuro usando las matemáticas? "No hay razón por la que el universo tenga que ser tan comprensible".

"Creo que las leyes de la física no son el resultado de un mero accidente, sino que son bastante especiales en su forma", responde por su parte Paul Davies, el director de Beyond. "El hecho de que la mente humana pueda entender la realidad profunda de la naturaleza y hacer que el mundo tenga sentido" es algo que también le inquieta. "¿Por qué podemos hacer eso? Nuestras mentes han sido moldeadas por la evolución para ayudarnos en nuestra supervivencia. ¿Qué tiene que ver eso con la física cuántica o los agujeros negros?".

Reacciones del tipo "es como mirar a Dios" o "estar delante del génesis" no implican necesariamente una confesión religiosa cuando uno está envuelto en asuntos de este calado. ¿Por qué se reacciona así? "La investigación científica es un trabajo duro", razona Polkinghorne. "Y la recompensa es a menudo en forma de maravilla, acerca del orden establecido en el mundo. Es algo que resulta profundamente satisfactorio desde el punto de vista intelectual". Pero la ciencia, de acuerdo con este físico y sacerdote, explica el proceso, "cómo ha ocurrido", pero no explica el "porqué".

De acuerdo con Polkinghorne, la ciencia no puede ir más allá. La belleza racional del universo es algo tan chocante que incita a buscar una explicación.

¿Experimentan los cosmólogos un sentimiento trascendente cuando investigan las etapas tempranas del universo? "Absolutamente", coincide Lawrence Krauss. "Estamos empezando a hacernos preguntas que jamás creíamos que pudiéramos responder. Es alucinante. Y muy inspirador. Muchos de mis estudiantes me abordan y me comentan: la creación según la Biblia es bastante aburrida". La historia real de cómo surgió el universo es una fuente de inspiración espiritual, "más fascinante de lo que nos imaginamos jamás".

LA CIENCIA EN LA PRENSA (4).jlpm

REPORTAJE
El misterioso universo acelerado

Diez años después de descubrir la energía oscura, los físicos no saben aún qué es
ALICIA RIVERA - Madrid - 11/06/2008 EL PAÍS


Tomar las medidas del universo es muy complicado, sobre todo a grandes distancias -y grandes distancias quiere decir muchos millones de años luz- sin poder uno moverse de aquí, de la Tierra. Hace diez años, dos equipos científicos independientes estaban observando unas galaxias lejanas con nuevas estrategias de medición, cuando descubrieron algo de lo más inesperado: que el universo se está acelerando. Tan inimaginable era, que la reacción de sus colegas fue de incredulidad: "No puede ser", "las observaciones están mal", "es un error". Pero, al parecer, no estaban equivocados: una década de investigaciones ha proporcionado muchos datos y pruebas independientes que convencen prácticamente a todos los expertos. La incredulidad inicial se ha convertido en interés frenético por el asunto.

De la incredulidad inicial se ha pasado a interés frenético por el fenómeno
La respuesta puede ser la constante cosmológica que Einstein rechazó
Los telescopios dedican tiempo para estudiar el fenómeno y las agencias espaciales planean equipos que ayuden a aclarar el asunto. En la comunidad científica se han formado media docena de equipos (uno de ellos el español PAU, que reune a 50 astrofísicos y físicos de partículas) para investigar la aceleración.

El hallazgo pone a pruebas teorías cosmológicas aparentemente bien establecidas y, según algunos sospechan, hasta la mismísima teoría de la relatividad de Einstein. Claro que, para la mayoría, la mejor respuesta está precisamente en Einstein, en su llamada constante cosmológica, que después descartó como su "mayor error".

El universo empezó con una gran explosión hace 13.700 millones de años, y desde entonces está en expansión. Si el universo fuera un bollo que va creciendo en el horno, las galaxias serían como las pasas que cada vez están más separadas unas de otras en la masa. Esto se sabe desde hace 80 años, incluso hay una ley, la constante de Hubble, que rige esa expansión: cuanto más distantes están las galaxias, más rápido se alejan entre sí. Por ello, los físicos contaban con que el impulso del big bang inicial sería cada vez menor y se ralentizaría la velocidad de expansión, por la atracción gravitatoria de la propia masa del universo.

De ahí que la sorpresa fuera mayúscula cuando, en 1998, los equipos del estadounidense Saul Perlmutter (Supernova Cosmoloy Project ) y del australiano Brian Schmidt (High-Z SN Search) anunciaron que lejos de frenarse, la aceleración del universo iba a más. Dennis Overby pone un buen ejemplo en The New York Times, citando al astrofísico Mario Livio: si uno tira al aire un manojo de llaves, se eleva cada vez más despacio y acaba cayendo al suelo; pero la aceleración de la expansión es como si las llaves, en lugar de caer, subieran cada vez más deprisa hacia el techo.
"Hace diez años", explica Perlmutter con mucha ironía, "se diagnosticó al universo un caso grave de energía oscura. Basándonos en observaciones de explosiones de supernovas muy lejanas dos equipos anunciamos la asombrosa conclusión de que la expansión del universo se estaba acelerando y no ralentizándose bajo la influencia de la gravedad, como cabría esperar". Para dar cuenta de esa aceleración "aproximadamente el 75% de la masa-energía del universo tiene que estar hecha de algo extraño, una sustancia gravitatoriamente repulsiva que nadie había visto antes. Esta sustancia se ha llamado energía oscura".

El hallazgo tiene repercusiones profundas en física y cosmología. "Los efectos son principalmente dos: con la energía oscura cambia la historia de la expansión del universo y cambia la manera en que se forman las estructuras cósmicas en escalas muy grandes, las galaxias y los cúmulos de galaxias", explica Licia Verde, del proyecto PAU.

Los científicos no se paralizan por lo inesperado, sino al contrario. Por un lado se afanan con más y mejores observaciones de la aceleración. Por otro, los teóricos buscan una explicación, y tienen varias opciones, incluidas variaciones de la teoría de la relatividad que generarían múltiples universos: el multiverso.

Pero la mayoría de las miradas se han vuelto hacia la constante cosmológica de Einstein. Él, como todo el mundo entonces, creía que el universo era estático, pero entonces sería inestable y su gravedad lo colapsaría. Para evitarlo, al sabio alemán se le ocurrió la constante cosmológica que actuaría de repelente para compensar exactamente la atracción gravitatoria. Es como si uno soplara con fuerza hacia arriba para que las llaves de Livio y Overby no caigan al suelo. Cuando Einstein supo que el universo no era estático, renegó de ese soplido, pero ahora resulta que puede ser la causa de la aceleración cósmica.

Álvaro de Rújula, teórico del Laboratorio Europeo de Física de Partículas (CERN), fue de los incrédulos hace diez años. "Las pruebas han mejorado tanto que ahora me lo creo, pero sólo con la cabeza, las tripas me siguen diciendo que hay gato encerrado; es un poco demasiado bonito, como besar el sapo que resulta ser el príncipe", dice. "¡Cómo no me va a interesar el más profundo misterio de la naturaleza! El ente en principio más sencillo, el vacío, resulta no estar vacío: al parecer tiene una densidad de energía oscura que domina el universo a gran escala".
"La manera más sencilla de explicar la aceleración es postular una constante cosmológica positiva", explica Enrique Álvarez, catedrático de Física Teórica (Universidad Autónoma de Madrid) y miembro de PAU. "En las ecuaciones de Einstein, que relacionan la geometría del espacio-tiempo con la densidad de energía de la materia, esto equivale a una densidad de energía que estaría presente incluso en ausencia de materia". Pero, puntualiza Álvarez: "La mayoría de los físicos no considera esta explicación satisfactoria porque tiene pegas de varios órdenes de magnitud; se han buscado otros modelos y el más popular es el llamado quintaesencia, pero tampoco encaja todo muy bien".

¿Qué explicación de la aceleración prefiere? "Solamente lo que Einstein llamó la constante cosmológica -rebautizada hoy, por razones propagandísticas, como energía oscura- es una explicación", responde De Rújula. "Las alternativas son menos elegantes y la naturaleza parece serlo al máximo. Detrás de la misteriosa sustancia que llena el vacío [el 75% del universo] se esconde probablemente algo verdaderamente interesante y elegante: el sapo debe ser un príncipe, pero aún más bello de lo que ahora imaginamos".

Álvarez lo resume: "Este es uno de los problemas en que podemos decir que ni siquiera sabemos lo que no sabemos".

ME ATREVO A RECOMENDAR ... ESTE LIBRO (2)

ESCORBUTO
Stephen R. Bown
Ed. JUVENTUD

El escorbuto se cobró grandes facturas durante la era de los grandes veleros y acabó matando a más navegantes que todas las batallas navales juntas. Ante la amenaza de la terrible enfermedad, las embarcaciones no se alejaban del puerto y aquellas que lo hacían estaban condenadas. La ignorancia contumaz de la élite médica, que propugnaba teorías absurdas basadas en investigaciones especulativas e ignoraba las cualidades vitales de los cítricos, costó miles de vidas y afectó el rumbo de muchas batallas navales. La cura del escorbuto merece cualificarse como uno de los grandes logros del ser humano; sin embargo su impacto en la historia ha pasado prácticamente desapercibido. Este libro es el relato detectivesco de un proceso médico, una fascinante historia verídica, protagonizada por el médico James Lind, el marino James Cook y el caballero Gilbert Blane, que se emplearon por separado para atajar la temida enfermedad.

viernes, 13 de febrero de 2009

ME ATREVO A RECOMENDAR ... ESTE LIBRO

Ayer, si siguiera vivo, Charles Darwin hubiera cumplido 200 años. Vivo no está, pero sigue tan fresco, incluso todavía continúa siendo contestado por algunos rancios sectores.
Esta es una edición íntegra de la autobiografía de Darwin.
J.L.P.M.







Charles Darwin, Autobiografía.
Traducción de José Luis Gil.
Ed. LAETOLI

De los 17 libros publicados en vida por Charles Darwin, sólo cinco han sido
raducidos al español. Más de 100 años después de su publicación, el 70%
aproximadamente de la obra de Darwin sigue inédita en nuestra lengua.
Es muy llamativo que obras como La fecundación de las orquídeas o Las
formas de las flores
no se hayan traducido jamás. Esta «Biblioteca Darwin»,
dirigida por el profesor de la Universidad de Valencia Martí Domínguez, se
propone paliar una desatención escandalosa, fruto sin duda del tradicional recelo
hispano por las ciencias, y publicar por primera vez en castellano la obra olvidada,
pero no por ello menos importante, de uno de los mayores pensadores y científicos
de todos los tiempos.



LE CIENCIA EN LA PRENSA (3)

TRIBUNA: JOSÉ MANUEL SÁNCHEZ RON
El ejemplo y las lecciones de Darwin

Cuando se cumplen 200 años del nacimiento del científico y 150 de la publicación de 'El origen de las especies', el creacionismo sigue dando batalla en numerosos países ilustrados de Occidente, incluida España

JOSÉ MANUEL SÁNCHEZ RON EL PAÍS, 01/02/2009

Hace 200 años, el 12 de febrero de 1809, nació Charles Darwin. Podemos debatir si los trabajos y teorías -y a la cabeza de éstas, la del origen de las especies mediante selección natural- de Darwin son más o menos importantes que el sistema geométrico que sistematizó Euclides, que la dinámica y teoría gravitacional de Newton, que la química que creó Lavoisier, que la relatividad de Einstein, que la física cuántica o que la teoría biológico-molecular de la herencia, pero lo que es difícil negar es que ninguna de esas contribuciones logró lo que consiguieron las de Darwin, que desencadenaron una serie de procesos que afectaron a algo tan básico como nuestras ideas acerca de la relación que nos liga con otras formas de vida animal que existen o han existido en la Tierra. En este sentido, abordó cuestiones que van dirigidas a la médula de la condición humana.

La vida del gran científico inglés estuvo llena de amor a la familia, decencia y ansia de justicia
Un libro reciente atribuía a la Reina la publicidad de una determinada visión del origen del mundo
Expresado muy brevemente, Darwin sustanció con muy variadas evidencias la idea (que otros antes que él habían propuesto) de que las especies evolucionan, encontrando además un mecanismo que hacía plausible tal evolución; defendió que la vida es como un árbol, de cuyas raíces han ido brotando diferentes ramas, esto es, especies que con el paso del tiempo continúan diversificándose, dando origen a otras bajo la presión de determinados condicionamientos. Después de esforzarse por encajar en una gran síntesis las piezas (zoología, botánica, taxonomía, anatomía comparada, geología, paleontología, cría domestica de especies, biogeografía...) del gigantesco rompecabezas que es la naturaleza, y estimulado por la noticia de que Alfred Wallace había llegado a conclusiones similares, aunque no tan sustanciadas, en noviembre de 1859 -pronto hará, por consiguiente, 150 años- publicó un libro que forma parte del tesoro más precioso de que dispone la humanidad: El origen de las especies. Doce años más tarde, en otro gran libro (El origen del hombre), aplicó a los humanos las lecciones del primero, despojándonos del lugar privilegiado en la naturaleza que hasta entonces nos habíamos adjudicado.
A lo largo del siglo y medio que nos separa de la publicación de El origen de las especies, la esencia de su contenido no ha hecho sino recibir confirmación tras confirmación. Puede que aún resten cuestiones por dilucidar, pero el evolucionismo darwiniano nos suministra un marco conceptual y explicativo imprescindible para comprender el mundo natural de manera racional, sin recurrir a mitos.
A la vista de todo lo dicho, podría pensarse que la única actualidad de Darwin y de su obra es la de honrar su memoria utilizando la excusa de los dos mencionados aniversarios. Ojalá fuese así. La evolución entendida a la manera de Darwin es un hecho científico, contrastado de manera abrumadora, y su relevancia para situarnos en el mundo es obvia, pero no es universalmente aceptada. En Estados Unidos solamente la acepta el 40% de la población. En Europa su aceptación es mayor, especialmente entre los franceses y los escandinavos (creen en ella aproximadamente el 80%), aunque no deja de tener problemas: en una encuesta realizada en Reino Unido por la BBC en 2006, el 48% la aceptaba, mientras que el 39% optaba por alguna forma de creacionismo, y un 13% "no sabía".
La historia de la oposición de los creacionistas a Darwin ha sido comentada en numerosas ocasiones y no pretendo volver a este asunto, que, sin embargo, continúa vigente, aunque ahora sea recurriendo sobre todo a una nueva terminología: el diseño inteligente, la idea de que un Dios debió de diseñar cada una de las especies que existen. Me interesa más hacer hincapié en el hecho de que una teoría científica contrastada y de enorme relevancia social sea rechazada o muy pobremente comprendida. En mi opinión, una explicación posible del tal rechazo reside en el desconocimiento.
Debatimos insistentemente -ahora estoy pensando en España- acerca de los programas educativos para nuestros jóvenes; por ejemplo, si es aceptable o no imponer asignaturas como Educación para la Ciudadanía, ante la cual algunos argumentan que limita la libertad de los padres a ejercer sus derechos en la formación (moral y religiosa) de sus hijos. Y, mientras tanto, la enseñanza de ciencias sufre cada vez de más carencias.
No parece preocuparnos demasiado, por ejemplo, si se enseñan adecuadamente sistemas científicos tan básicos como la teoría de la evolución de las especies. El pasado noviembre, se publicó un libro en el que se adjudicaba a la Reina, doña Sofía, la siguiente manifestación: "Se ha de enseñar religión en los colegios, al menos hasta cierta edad: los niños necesitan una explicación del origen del mundo y de la vida".
Podrá resultar doloroso a algunos, pero la única explicación que da lugar a comprobaciones contrastables sobre el origen del mundo y de la vida procede de la física, de la química, de la geología y de la biología. La religión pertenece a otro ámbito.
¿Es legítimo ocultar a los niños ese mundo científico, condicionando así sus opiniones futuras, en aras a algo así como "mantener su inocencia", o por las ideologías de sus padres? Haciendo públicas sus opiniones en una cuestión cuya importancia no puede ignorar, y por la elevada posición que ocupa, doña Sofía hizo publicidad de una determinada forma de entender el mundo, que jamás ha recibido comprobaciones contrastables.
Una forma, además, que, al menos en España, de la mano de la jerarquía católica, pretende intervenir en apartados que pertenecen al poder legislativo, como son los programas educativos o lo que es admisible o no en los tratamientos médicos (no puedo olvidar en este punto las manifestaciones de la Conferencia Episcopal Española a raíz del nacimiento, en octubre de 2008, de un niño tratado genéticamente para curar a un hermano que sufría anemia congénita: "El nacimiento de una persona humana ha venido acompañado de la destrucción de sus propios hermanos a los que se ha privado del derecho a la vida"; palabras no sólo cuestionables desde el punto de vista de la ciencia sino también, en mi opinión, carentes de compasión ante el sufrimiento ajeno).
Necesitamos educar en la ciencia a nuestros jóvenes; no, naturalmente, para que entiendan que ella es el juez supremo para las opciones que quiere asumir una sociedad democrática. La ciencia es, simplemente, un instrumento -el mejor- que los humanos hemos inventado para librarnos de mitos, orientarnos ante el futuro y protegernos de una naturaleza que no nos favorece especialmente. Sucede, no obstante, que no se ha instalado de manera tan segura en nuestras sociedades como se podría pensar, siendo contemplada frecuentemente con sospecha. Si como muestra sirve un botón, he aquí la siguiente cita (Juan Manuel de Prada, XL Semanal, 5-11/X/2008): "La ciencia parece dispuesta a demostrar esto y lo otro; y mañana podrá sin empacho alguno desdecirse y demostrar que lo opuesto a lo contrario es lo cierto, en un tirabuzón enloquecido y sin fin. Y todo ello bajo un manto de inapelable respetabilidad". Por supuesto que existen científicos envanecidos, incluso tramposos, y también que se cometen errores, pero no olvidemos que en última instancia la ciencia no es sino capacidad de identificar y remediar equivocaciones, de buscar sistemas con capacidad predictiva.
Recordar y celebrar a Darwin es más que un acto festivo; constituye un homenaje a la ambición y el rigor intelectual, al poder de nuestra mente para comprender el mundo. Y también es un ejemplo de que la investigación científica no tiene por qué ser ajena a atributos humanos como son el amor a la familia, la decencia, la discreción o el ansia de justicia. La biografía de Charles Darwin -un hombre que llevó a cabo un largo y complejo camino, que le llevó a consecuencias que no había previsto y que le obligaron a desprenderse, en un doloroso proceso, de las creencias religiosas en que había sido educado- está repleta de todo esto.
José Manuel Sánchez Ron es miembro de la Real Academia Española y catedrático de Historia de la Ciencia en la Universidad Autónoma de Madrid.

jueves, 12 de febrero de 2009

LA CIENCIA EN LA PRENSA (2)

REPORTAJE
Completando a Charles Darwin
La tectónica, la oceanografía o el clima están dando respuesta a los interrogantes pendientes sobre la evolución - Los nuevos hallazgos cierran lagunas en el 200º aniversario del científico
JAVIER SAMPEDRO 06/02/2009

Una crítica clásica contra Darwin es que, pese a haber titulado su libro El origen de las especies (1859), justo no aclaró cómo se originaban las especies. La selección natural -el mecanismo evolutivo descubierto por el naturalista- se basa en la acumulación gradual de pequeños cambios, mientras que las especies suelen ser entidades discretas y bien definidas: vemos leones y tigres, no una escala Pantone de leotigres. La investigación reciente, sin embargo, ha aclarado muchos puntos del problema de la especiación, o generación de nuevas especies, y ha confirmado que la especiación tiene una relación directa con la selección natural darwiniana. También han revelado unos principios generales que hubieran resultado sorprendentes para el padre de la biología moderna.
El naturalista nunca explicó de verdad el origen de las especies
Los cambios en los seres vivos no son paulatinos; van a grandes saltos
La explosión de la vida animal ocurrió hace 543 millones de años
No sólo compiten los individuos; también lo hacen los genes
"La competencia por los recursos, las carreras de armamentos entre predadores y presas y otros factores biológicos dan forma a los ecosistemas locales durante periodos cortos", dice el evolucionista Michael Benton, de la Universidad de Bristol. "Pero son factores externos como el clima, la oceanografía y la tectónica continental los que explican las pautas de la evolución a gran escala". Benton es el autor de uno de los cinco artículos con que la revista Science celebra hoy el 200º aniversario del nacimiento de Charles Darwin (12 de febrero de 1809-19 de abril de 1882).
La idea de que la competencia entre seres vivos es el principal motor de la evolución arranca del propio Darwin y suele ser la preferida por los biólogos. Se la conoce como la hipótesis de la reina roja, por el personaje de Lewis Carroll que le dice a Alicia en A través del espejo: "En este país tienes que correr todo lo que puedas para permanecer en el mismo sitio".
El paradigma de la reina roja son las carreras de armamentos entre predador y presa: los conejos corren cada vez más para escapar de los zorros, lo que fuerza a los zorros a correr cada vez más para seguir comiendo lo mismo que antes; las corazas de las presas se hacen cada vez más duras y las pinzas de sus predadores cada vez más fuertes, con lo que todos corren lo más que pueden para que todo permanezca en el mismo sitio.
El problema es que la evolución a gran escala no permanece en el mismo sitio como Alicia. Los modelos del tipo reina roja, según Benton, no explican que los seres vivos se hayan hecho más complejos en la historia del planeta, ni que hayan colonizado nuevos espacios (como la tierra firme), ni que ciertos linajes concretos hayan brotado en explosiones evolutivas de radiación de nuevas especies. "Todas estas cosas han ocurrido muchas veces en los últimos 500 millones de años", afirma el científico británico.
La razón hay que buscarla en la geología, y algunos ejemplos son bien conocidos. Desde que el supercontinente Pangea empezó a quebrarse hace 250 millones de años, el baile de sus fragmentos por la corteza terrestre ha tenido un efecto decisivo. La biología alienígena de Australia -ornitorrincos, canguros, koalas, wombats, emús, cucaburras- y de Suramérica -llamas, anacondas, pirañas, vicuñas, tapires- se debe a que ambos territorios han sido islas durante casi 100 millones de años.
El sentido común no es la mejor guía para averiguar las relaciones de parentesco entre las distintas especies. El damán, un animalillo africano al que cuesta distinguir de una rata, se agrupa con el elefante en una gran rama evolutiva de los mamíferos, la de los afroterios. Las personas, los delfines y las vacas nos apiñamos junto a las ratas propiamente dichas en la segunda rama (los boreoterios), dejando la tercera (los desdentados) para el armadillo y el oso hormiguero.
La razón es que los mamíferos originales se dividieron físicamente en tres grupos hace 100 millones de años, cuando las actuales África, Eurasia y Suramérica se escindieron de un continente único.
En los últimos años, los geólogos también han encontrado fuertes correlaciones entre la diversidad del plancton -los organismos microscópicos que flotan en el mar- y la temperatura del agua en esa época. El enfriamiento oceánico de los últimos 70 millones de años, por ejemplo, se asocia a una gran radiación de especies de foraminíferos, los principales microfósiles marinos. En general, las fases de calentamiento por las que ha pasado el planeta se han caracterizado por una menor riqueza de géneros, y de familias enteras, de seres vivos.
Si la competencia entre seres vivos es la reina roja, la evolución guiada por las condiciones externas se conoce como la hipótesis del "bufón de corte". Los bufones sólo pretendían complacer a los poderosos, y jamás cambiaban sus números a menos que se vieran forzados por una catástrofe (como una guerra o un cambio de régimen). Si la reina roja es la idea preferida por los biólogos, el bufón de corte es la favorita de los geólogos, como parece lógico. Y es el motor del cambio que parece predominar a las escalas evolutivas, de 100.000 años para arriba en el tiempo, y de especie para arriba en la taxonomía, la ciencia que clasifica a los seres vivos en una jerarquía de especies, géneros, familias, órdenes, clases, filos y reinos.
La cuestión de la reina roja tiene mucha relevancia para el problema estrella de la biología evolutiva: la explosión cámbrica, la gran dificultad que atormentó a Darwin hace un siglo y medio. La Tierra tiene 4.500 millones de años, y los primeros microbios aparecieron poco después (hay evidencias fósiles de 3.500 millones de años). Pese a ello, la explosión de la vida animal sólo ocurrió al empezar el periodo Cámbrico, hace 543 millones de años. La evolución tardó poco en inventar a los animales, aunque tardó 3.000 millones de años en ponerse a ello. Ésta es la versión moderna del dilema de Darwin.
"Creo que la explosión cámbrica es un excelente ejemplo de evolución por el modelo del bufón de corte", confirma Benton a EL PAÍS. "Es un caso en que el cambio dramático del entorno físico tiene un profundo efecto en la evolución. Esto no tiene nada que ver con sugerir que la selección natural es errónea, o que Darwin se equivocó. Se trata simplemente de que los cambios dramáticos e inesperados, como el que ocurrió entonces, pueden abrumar a los procesos normales de la selección natural y poner a cero el reloj evolutivo, como solía decir Steve Gould". Stephen Jay Gould fue un destacado (y polémico) evolucionista norteamericano hasta su muerte en 2002.
El periodo anterior al Cámbrico (de 1.000 a 543 millones de años atrás) se llama Neoproterozoico, de mote "precámbrico", e incluye las más brutales glaciaciones conocidas por los geólogos, como la Sturtian y la Marinoan. Algunos científicos creen que fue una era de bola de nieve planetaria (snowball earth), en la que los casquetes polares cubrían incluso el ecuador terrestre.
Antes de esa era del hielo, los niveles de oxígeno en la atmósfera eran muy bajos, inferiores al 1% de la concentración actual, como habían sido en los 3.000 millones de años anteriores. La última de las grandes glaciaciones precámbricas, la Marinoan, terminó hace 635 millones de años, y los últimos datos indican que los primeros animales, las esponjas, ya habían evolucionado para entonces. Y los datos indican que el fondo marino no estuvo bien oxigenado hasta los tiempos de la explosión cámbrica. Si la biología tardó 3.000 millones de años en inventar a los animales, la razón parece ser que la geología no se lo permitió antes.
La mosca Drosophila ha resultado un modelo muy útil para estudiar los fundamentos genéticos de la especiación. Por ejemplo, la especie americana Drosophila pseudoobscura se separó hace 200.000 años en dos subespecies llamadas USA y Bogotá. Como los caballos y los burros, las moscas USA y Bogotá pueden cruzarse, pero sus hijos son estériles. En casos de especies más divergentes, los hijos suelen ser no ya estériles, sino directamente inviables. El punto es que la genética de la mosca permite hallar los genes exactos que son responsables de la esterilidad o de la inviabilidad.
Los resultados apuntan a muy pocos genes, y varios están relacionados con el transporte nuclear, el intercambio de materiales entre el núcleo y el resto de la célula. Dos de los genes de la especiación son Nup96 y Nup160, componentes del poro nuclear que comunica al núcleo con su entorno, y otro es RanGAP, que regula el mismo proceso. No hay ninguna razón a priori para que la especiación esté relacionada con un mecanismo tan concreto como el transporte nuclear, y estos resultados son inesperados en ese sentido.
Pero estos genes también tienen relación con un fenómeno que lleva décadas siendo un sospechoso central para los genetistas interesados en la especiación. Se llama impulso meiótico (meiotic drive), o más en general "conflicto intragenómico". Al igual que la selección natural clásica, se trata de un proceso de competencia, pero no entre individuos dentro de una especie, ni entre especies dentro de un ecosistema, sino entre genes dentro de un genoma, es decir, entre las partes de un mismo individuo.
Esto es posible porque cada individuo produce miles o millones de gametos (óvulos o espermatozoides, según su sexo), cada uno con una combinación distinta de genes. Y hay genes que sesgan a su favor la producción de gametos, de modo que se aseguran su presencia en más de la mitad de los espermatozoides o los óvulos, que es lo que les correspondería por azar. Estos genes son auténticas bombas evolutivas, porque pueden imponerse en una población en pocas generaciones aun cuando no hagan nada beneficioso para el individuo que los alberga. Los demás genes se ven forzados a adaptarse para convivir en el mismo genoma que ellos, y esto conduce a las poblaciones por caminos separados aun cuando sus entornos sean similares. Esto es la evolución por "conflicto intragenómico".
En el ejemplo mencionado antes de las dos subespecies de Drosophila pseudoobscura, USA y Bogotá, el grupo de Allen Orr, de la Universidad de Rochester, acaba de demostrar que un solo gen (llamado overdrive) es responsable a la vez de la esterilidad de los híbridos entre las dos subespecies, y de causar su propia representación en los gametos por encima del 50% que le correspondería por azar. "Nuestros resultados", afirma Orr, "indican que el conflicto intragenómico, una forma de adaptación al ambiente genómico interno, es una fuerza importante en la especiación".
Otro descubrimiento reciente es la importancia crucial de las duplicaciones de genes en la evolución. Las duplicaciones o pérdidas de genes son la principal fuente de variación genética en nuestra especie: cualquier persona se distingue de cualquier otra en un promedio de 70 regiones duplicadas o amputadas en uno de sus cromosomas.
Dos siglos después, la ciencia rellena huecos que a Darwin le hubiera encantado explicar.
Una teoría revolucionaria
- Si los seres vivos tienen una gran capacidad de reproducirse, pero los recursos son limitados, sólo las variantes más aptas de cada generación sobrevivirán lo suficiente como para reproducirse y transmitir sus cualidades a la siguiente.
- La repetición de este proceso ciego una generación tras otra provoca inevitablemente que las especies vayan cambiando y haciéndose más aptas para vivir en su particular entorno.
- La principal predicción de la teoría de la evolución es que todos los seres vivos del planeta provenimos por ramificaciones sucesivas de una sola especie simple y primordial.
- Los humanos compartimos con las ratas, los gusanos, los abetos y las bacterias tal cantidad de fundamentos genéticos y bioquímicos que el origen común de la vida es uno de los hechos científicos mejor establecidos.
- Darwin propuso una teoría gradual: ínfimos cambios acumulados generación tras generación durante millones de años. El registro fósil, sin embargo, presenta transiciones relativamente bruscas (según las escalas de los geólogos).